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Summaru 

Low-frequency attenuation in the Arctic Ocean is more than an order of 
magnitude greater than that in the open ocean. Scattering at the ice/water 
interface is the most likely mechanism. Earlier estimates, based on Marsh 
theory for sea-surface scattering, showed reasonable consistency with 
experiment. However, analysis of more recent experiments, with roughness 
parameters derived from concurrent measurement of the underice profiles, 
yields values that are low by more than a factor of two. 

The approximations of Marsh theory have been investigated. More exact 
calculation of the scattering integral by numerical methods has been found 
to increase the discrepency at low frequencies. 

Failure of the pressure-release approximation to account for attenuation 
suggests that impedance effects are involved. For impedance calculations, 
the ice layer is modeled as a uniform elastic solid, assuming that acoustic 
contact at the ice/water interface is perfect. Trapped air could reduce the 
effective impedance, making the pressure-release assumption valid. The 
transfer function of acoustic pressure to vertical velocity is estimated by 
comparing hydrophone and seismometer signals and no evidence of such an 
impedance discontinuity is found. However, horizontal surface velocities 
are much greater than predicted by thin-plate theory, which supports a 
"rocking" motion produced by slopes. 

Perturbation analysis shows scatter by both the vertical displacements 
and the slopes of the ice/water interface. The displacements produce a 
vertical velocity-dipole component of scatter in addition to a vertical 
pressure-dipole component analogous to the free-surface case. The latter 
is the dominant mechanism at higher frequencies while the former is 
negligible. The horizontal-dipole component produced by slopes may be a 
significant mechanism at low frequencies; however, the predicted values 
of scattering loss still fall far short of agreement with data. 
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Introduction 
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Figure 1: Arctic Ocean sound-speed profile and ray diagram. 

The Arctic Ocean is a unique acoustic environment, principally because 
the sound speed increases monotonically with depth and the surface is 
usually covered by ice. Upward refraction coupled with the effects of the 
rough ice/water interface cause severe reverberation and attenuation, 
both of which can limit SONAR performance. 

Figure 1 shows a typical sound-speed profile and ray diagram. In deeper 
waters, the maximum RSR cycle distance is of the order of 50 km. At short 
range, reverberation and absorption in the medium are the limiting factors. 
At long ranges, most of the energy is concentrated at low grazing angles. 
Multiple reflections at the ice/water interface are then involved and the 
resulting loss can exceed absorption by more than an order of magnitude. 

The suspected mechanism is scattering at the rough ice/water interface. 
Early modeling efforts were based on the sea-surface theory of Marsh (1). 
Free-surface theory appeared to give plausible results; i.e. the predictions 
were consistent with experiment for the standard deviation 2.3m, a value 
in reasonable agreement with underice-profile data. 

Marsh theory is valid only over a limited range of angle and frequency. 
Recent advances in scattering theory now permit numerical calculation 
over a wider domain. In addition to improved theory, data are available 
from underice profiles taken concurrently with propagation measurements. 
With more reliable estimates of standard deviation and correlation length, 
the calculated scattering losses for the free-surface approximation are 
consistently low by more than a factor of two. 



In earlier work, the ice/v/ater interface was taken as compliant mainly 
because theory for finite-impedance boundaries was not available. Theory 
for a rough fluid/solid interface still does not exist. To approximate the 
effects of acoustic impedance, we consider a uniform flat elastic layer 
and treat roughness by the perturbation method. Impedance is calculated 
by the theory of Brekhovskikh [21. 

In the compliant case, displacements reradiate as vertical-dipoles. At 
low frequencies and grazing angles, ice impedance tends to mass-loading 
and the elastic effects vanish. Ice floats on water and is isostatic on the 
average, the total mass being equal to that of the displaced water. In this 
limit, the layer would become quite transparent. However, if isostacy does 
not occur on the scales involved, some vertical-dipole scattering can be 
expected since the ice/water density ratio is roughly 0.9. 

Although the roughness of the air/ice interface can also have an effect, 
the magnitudes are small because standard deviations are small compared 
to the ice/water interface. 

Losses due to dissipation within the layer also appear to be small except 
at high frequencies and grazing angles where resonance occurs between 
the acoustic wave in water and the shear or compressional waves in ice. 
For the low frequencies and grazing angles involved in Arctic propagation, 
dissipation should be negligible. 

Impedance effects could become negligible if acoustic coupling at the 
ice/water interface were reduced by trapped air. Comparison of vertical- 
seismometer and hydrophone signals shows no indication of this type of 
impedance discontinuity. However, the horizontal-seismometer signals are 
much greater than predicted by flat-plate theory, indicating that slopes 
are also involved in the ice motion in response to acoustic waves. 

The perturbation method does not consider local grazing-angle effects. 
Finite slopes increase the "effective" grazing-angle, which also increases 
acoustic coupling at rough solid boundaries. Schmidt and Kuperman (3) have 
considered this problem; however, their analysis is based on the Kirchhoff 
(tangent-plane) method, which is valid only at higher frequencies. 

At finite-impedance boundaries, the slopes produce a hohzontal-dipole 
component of radiation associated with "rocking" motion. Analysis shows 
that this is a significant scattering mechanism at the lower frequencies. 
However, attenuation calculations still fall far short of agreement with 
experimental data in this range. 

The purpose of this report is to review the experimental and theoretical 
evidence, in the hope that resolution of the remaining questions will lead 
to an accurate predictive model. 
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Attenuation data 
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Figure 2: Arctic attenuation measurements. 

figure 2 compares attenuation data with predicted adsorption in Arctic 
sea-water. The solid circles are 1959 NUSC data [4] and open circles are 
Tr1sten/Fram-82 data [51. The connecting curves are arbitrary. 

The striking features of the data are the magnitude and resemblence to 
relaxational phenomena. Below 1 kHz, the values are more than 10 times 
greater than absorption. Saturation at high frequencies is believed to be 
due, in part, to experimental conditions. At high frequencies, attenuation 
limits the useable range to less than 50 km and absorption dominates in 
this regime. At low frequencies, long ranges are required in order to make 
accurate measurements and ice loss then becomes dominant. 

The likely mechanism Is scattering at the rough ice/water interface. The 
theory for free-surface scattering shows that the reflection loss depends 
linearly on grazing angle for small angles. Since skip distance has similar 
dependence, loss vs range depends mainly on gradient. Ray angles greater 
than about Q° encounter a smaller gradient; however, divergence effects 
are greater and contributions are small at long ranges. Cutoff by bottom 
topography may be an Important factor. 

We next examine the statistical model of underice roughness to be used 
in calculating reflection loss. 
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Ice Model 
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Figure 3: Ice roughness spectrum model. 
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Figure 3 shows o sketch of o typical ice profile. The graph is a spectrum 
of the ice/water interface roughness (Air/ice interface roughness is small 
and will be neglected). The analytic spectrum (smooth curve) is derived by 
curve-fit of experimental spectra and is given by S^=h^Q^'^/( Q^ * d^^^'^ 

where Q is the angular spatial frequency or wavenumber. The correlation 
function, derived by cosine transform of S^, is ^(r)=h'^(Q^r) K^iQj}, where 

K| is the modified Bessel function, 1=2/0^^ is the correlation length and h 

is the standard deviation about mean draft. Azimuthal distribution is taken 
to be isotropic and the 2,-dimensional spectrum, derived by the J^ Bessel 

transform, becomes S^=2 h^ Q 2/( Q 2 + Q2)2 y^^ere   \^Q dQ SJQhh^. 

Ice profiles of draft were analyzed in approximately 1 km segments and 
averaged over 10 contiguous segments. The power spectra and correlation 
functions were calculated numerically. Correlation lengths were measured 
by fitting correlation curves with the analytic model. 
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Figure 4: Standard deviation vs mean draft 

The standard deviation vs mean draft data in Figure 4 show quite high 
correlation. The RMS value for the set is h=2m. Figure 5 shows negligible 
correlation between L and mean draft. The average of the set is L= 44m. 
Figure 6 shows no significant correlation between L and h also. 
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Figure 5: Correlation length vs mean draft 
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Figure 6: Correlation length vs standard deviation 
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Draft (m) 

Figure 7: PDF of draft-model and data 

Analysis of a "shot-noise" nnodel of the underice roughness by Nuttall [61 
indicates that the probaDlllty density function (PDF) of draft should be 
similar to a Rayleigh distribution. 

In Figure 1, the expected PDF (smooth curve) is compared with typical 
data. Both have been normalized to unit area and have the same standard 
deviation. Note that the mean draft of the model is clearly greater than 
that of ice and the PDF is less highly peaked. The purpose of the composite 
model is to reconcile these discrepencies. 

The high degree of correlation between standard deviation and mean 
draft in Figure 4 indicates that the underice roughness Is not statistically 
homogeneous. There appear to be significant variations in the roughness 
parameters that occur on a scale much larger than the correlation length 
and this suggests that modeling roughness as a single-population may not 
be appropriate. 

The ice pack shows large areas of comparative smoothness interspersed 
by areas of high roughness. We will consider a composite model composed 
of two populations having different degrees of roughness and occupying 
different contiguous areas. Note that this differs from the conventional 
sea-surface composite model in which two are superposed. 
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Figure 8: PDF of draft-composite model and ice data 

In Figure Q, the data are fitted using two distributions having different 
standard deviations; i.e. 1.1m and 3.3m, shown by the dashed curves. The 
weighting factors are 0.7 and 0.3, respectively. A bias of 1.5m has been 
added to improve the fit and the respective mean drafts are approximately 
4m and 8m. The sum of the two components, shown by the solid curve, is 
now in fairly good agreement with the data. 

Scattering loss is proportional to the variance h^. When the correlation 
lengths of the two components are equal, the area-weighted variances are 
additive. The variance of mean draft has a much greater correlation length, 
which will reduce its contribution in Marsh theory. This component will 
appear as an increase in spectrum level at very low wavenumbers and a 
slow decay in the correlation function at long lags. Both effects have been 
noted in the experimental data. 

While the composite model appears somewhat more realistic than the 
homogeneous model, the effects on scattering appear to be negligible, at 
least in the free-surface case. Concentration of roughness in one area at 
the expense of another does not increase low-frequency loss significantly 
in this approximation. It will be seen later, however, that the effects do 
become important when Impedance is taken into account. 
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Scottehnq-loss theory 

The Marsh formula for the coherent energy reflection coefficient can be 
written as Q=1-SL, where SL~3.3 s1n8 ikh^/ikl)^^'^, 8 is grazing angle and 
k is acoustic wavenumber. To allow some extension beyond the limits of 
perturbation theory, the loss is approximated as 4.34 SL (dB/bounce). 

The skip-distance in a surface-channel is given by 2c tan8/g where c is 
the sound-speed and g Is the gradient. Loss vs range is then approximately 
Independent of ray-angle for small angles. For g=.06/sec, h=2m and L=44m, 
the attenuation becomes A~1.5 f^''^ dB/km where f is the frequency in kHz. 
This result Is In good agreement with the data-trend of Figure 2 but is too 
low by roughly a factor of two. More exact analysis, using computer codes 
for calculating propagation loss and adding the reflection loss per bounce, 
show that the approximation is quite accurate. 

The fact that the Marsh formula Involves the correlation length Implies 
that the scatter beam-pattern is Important In this approximation regime. 
For kL<27T the beamwidth of the scattered energy tends to become large. 
Much of the energy will then escape from the channel at each incidence and 
be absorbed by the bottom. 

For kL>2Tr, the scattered energy approaches specular and loss goes as ]<?, 
which is characteristic of theEckart 17] regime. While perturbation theory 
requires kh s1n8 «1, the Eckart solution is not limited by this criterion 
and the loss approximation becomes "exact". 

In the low frequency limit where kL«2Tr, scattering becomes diffuse and 
the loss goes as k"*. This Is characteristic of Rayleigh scattering where all 
scales become small compared to acoustic wavelength. For the correlation 
length 44m, rolloff becomes Important below about 50 Hz. 

A formula based on the method of small perturbation (MSP) and valid in 
all domains will be used. Equation 9.6.3 of Brekhovskikh and Lysanov [8] 
calculates scattering loss by a 2-dimens1onal integral over the surface 
spectrum. In Appendix A, we derive an equivalent integral over scattering 
angles, which shows where the energy goes. Using the analytic spectrum 
and assuming isotropicity reduces the computational problem to a single 
integral over depression angle. Numerical evaluation of the B&L integral 
has been found to give identical results. 

The coherent reflection coefficient Q is defined here as the fractional 
intensity of the reflected wave in the specular direction. It is assumed, 
temporarily, that the Interface acts like a rough free-surface. Assuming 
small displacements compared to the vertical component of the acoustic 
wavelength, MSP theory yields the following result; 
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4 fitl 7 If    oo 
SL= k sine IdG'sin 9'cose'Id0|rdr4^(r)J„(Qr)/'2ir 

O -IT     O 

Q=klcos^8+cos^8"-2cosfircos8cos8'l^'^ 

lc=2flr/C M^(r)=h''Q^rKi(Q,,r) 

oo j 

J rdr¥(r)J (Qr)=2h Q^/(Q^ + Q2)2^S2 

First Integral 

-If 

u=(k/Qjj) (cos^e+cosV)     v=2(k/Q(,) cos8cos8' 

Second Integral 
■an 

SL=k'*sineid0'sirf e'cosG" s; 

Final numerical integral 

Eckart    SL=(2kh sinB)" Ru»1   kL»l 
2 1/2 

Marsh    SL=3.3(kh) sinBAkL)       Ru«l   kL»1 

Ragleigh SL=(2/3)(kh)^kLfsine    kL«l 

L=2/Q, Ru=kL sin (8/2) 

Asymptotic Approximations 

The theory is based on Bragg-scatter matching between acoustic (k) and 
surface (O) wavenumbers as a function of the Incident grazing-angle 8, the 

scatter grazing-angle 9' and the azimuthal angle 0 relative to the direclion 
of the incident plane-wave. 

The first (radial) integral yields the 2-dimensional analytic spectrum. 
The second (azimuthal) integral yields a function similar to the analytic 
1-dimensional spectrum. This leaves only a single integral over scatter 
angle 8' to evaluate numerically. Asymptotic solutions provide a check on 
results. The parameter Ru is a measure of forward-scattering directivity 
and occurs in Rutherford scattering. 
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Figure 9: Ice spectrum integrands vs scatter angle. 

The curves of Figure 9 show the scatter-loss integrands vs the scatter 
grazing-angle in the frequency range 10-1000 Hz for an incident grazing 
angle lO**. Results have been normalized by dividing by (kh)^ sin8 in order 
to limit the scale. Scattering is seen to become diffuse at low frequencies 
and to approach specular at high frequencies. 
The integrands can be considered as scatter from an area of radius equal 

to the correlation length and "coherent" with the incident plane-wave. The 
summation over a random ensemble of areas makes the average scattered 
energy Incoherent. 

The integrands resemble beam patterns; however, they are not the usual 
cross-sections but are azimuthally-integrated values and multiplication 
by cos8' is required for flux integration. At low frequency, the Integrand 

approaches the vertical-dipole pattern sin^e' multiplied by cose'. 
From the integrands, one can estimate the fraction of scattered energy 

remaining in the channel. For a critical trapping angle of 10", for example, 
more than 1/2 would be lost at each reflection at frequencies below 1 kHz. 
After multiple reflections, incoherent levels should then converge rapidly 
to negligible values, providing that the bottom is sufficiently lossy. 
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Figure 10: Ice spectrum scattering coefficients vs frequency. 

In Figure 10, the values obtained by numerical integration are plotted vs 
frequency for selected grazing angles between 4 and 16", which represents 
the domain of interest for long-range propagation. Values have again been 
normalized by dividing by (kh)'^sin8, making both the Marsh and Rayleigh 
asymptotes independent of grazing angle. The dashed lines at the right are 
the Eckart asymptotes. 

Note that the Marsh curve tends to become inaccurate below 100 Hz in 
the Rayleigh regime and also at high frequency in the Eckart regime. 

Loss estimates below 100 Hz have already proven too low by more than a 
factor of two in the Marsh approximation. The integral values become even 
smaller with decreasing frequency. Since the conditions for MSP theory 
are evidently not exceeded in this range, there is little reason to suspect 
errors in the approximations. 

Failure to account for attenuation indicates that impedance effects must 
be involved. Dissipation within the ice layer is a potential loss mechanism. 
However, much higher backscatter levels are also observed experimentally 
than predicted by free-surface theory, which suggests that the effects of 
impedance on scattering must be more significant. 
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Figure 11: Interface impedance model. 

The impedance problem is illustrated in Figure 11 where T^ and p are the 
shear and compressional grazing-angles in ice, respectively. Neglecting air 
impedance and dissipation, reflection is total. Dissipation is included by 
taking c^ and c^to be complex, as described in Appendix B. 

The plane-wave reflection coefficient then becomes [21: 
Rz= [-W sine(Zr+iZi)/pc]/(1+ sine (Zr+iZi)/pc] 

In order to get any scattering by interfacial roughness, there must be an 
impedance discontinuity at the boundary. It is instructive to normalize 
relative to Zo. Consider the lossless case. When Zi/Zo->0, there is perfect 
reflection with a phase reversal and the interface becomes effectively 
pressure-release. For Zi/Zo->p^/p, the interface discontinuity is inertial 

and vanishes for equal densities in the two media. 
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Figure 12 Impedance ratio Zi/Zo vs grazing angle. 

Figure 12 shows Zi/Zo as a function of grazing angle for the frequency 
range 50 to 300 Hz in 50 Hz steps. Compressional and shear speeds in ice 
have been taken as 3000 and 1800 m/s, respectively, with the shear loss 
tanA=.02. For simplicity, the same value is used for compressional loss, 
but effects are minor. 

At low frequencies, Zi/Zo^p^/p for all angles. As frequency increases, 

resonance effects of the compressional and shear waves become evident 
around the critical angles 60*" and 33", respectively. For grazing angles 
greater than 60**, compressional effects dominate and reactance oscillates 
between inertial (+) and stiffness (-) control. Similar effects are seen 
between 30*" and 60** where shear effects dominate. Below 30", inertial 
effects dominate, diminishing to zero as the shear resonance begins to 
develop. 

In the Arctic sound-channel propagation problem, grazing angles less 
than 15" and frequencies below 1 kHz are of interest at longer ranges. In 
this domoin, there i3 o simple tronsition from the moss-looded condition, 
with negligible boundary discontinuity, to an effectively pressure-release 
condition with perfect reflection at the interface. The problem is that the 
transition occurs at such high frequencies. 
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Figure 13; Impedance ratio Zr/Zo vs grazing angle. 

Figure 13 shows curves of the impedance ratio Zr/Zo for t8nA=.02. It is 
clear that internal losses are small except at resonances, where multiple 
internal reflections occur. Mass loading become dominant at small grazing 
angles and the elastic properties vanish. In this regime, dissipation losses 
become quite small. 

The ratio Zi/Zo is most important in the case of vertical-dipole scatter 
because it is a measure of the phase shift of the reflected wave relative 
to the ice/water interface. No phase shift means perfect reflection at the 
interface while a delay equal to that in a water layer of equal thickness 
means that the ice/water impedance discontinuity vanishes. Corresponding 
effects in the time domain are shown in Appendix C. 

Perturbation analysis for finite impedance 191 is outlined in Appendix D. 
Results show that the vertical-dipole component of scatter loss is simply 
the free-surface integral with the integrand multiplied by the effective 
reflection coefficient Ro^. 

The analysis also shows that there is second vertical-dipole component 
of the velocity type, analogous to a piston in a baffle. The scatter loss for 
the infinite-impedance case involves a similar integral. For the finite- 
impedance boundary, the integrand is simply multiplied by the effective 
reflection coefficient Roo^. 
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Figure 14: Altenualion-verllcal dipcile models. 

Figure 14 compares predictions of the various vertical-dipole models to 
the attenuation data. The gradient is taken as 0.06/s and the grazing angle 
as 8", making the skip-distance roughly 7 km. 

The dashed line is the Marsh formula. Note that the predictions are low 
by more than a factor of two at low frequencies. 

Curve I is the numerical-integration result for the free-surface model. 
The slow low-frequency rolloff involves transition to the Rayleigh regime 
where scattering becomes diffuse. A slovi' transition to the Eckart regime 
of "specular" scatter is seen at the higher frequencies. 

Curve V shows the effects of the impedance factor Ro^ on curve I. Note 
that the attenuation decreases rapidly In the mass-loading regime below 
about 200 Hz. The "piston" component turns out to be negligible throughout 
the entire range and is omitted. 

Dissipation loss is calculated from the magnitude iRzP. Curve A shows 
the results for tanA=.02. Total attenuation Is then the sum of A and V. 

Clearly, the results do not agree with the data and "improvements" seem 
to have made matters much worse. Analysis of seismometer data from 
experiments by Buck [10] suggests a possible reason for the failure. 
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Seismometer experiments 
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Figure 15: Seismometer/hydrophone experiment. 

Perfect acoustic contact at the ice/water interface has been assumed. 
Trapped air could make the impedance very low. Comparison of hydrophone 
and seismometer signals shows that this is not the case. 

Figure 15 shows the response (greatly exaggerated) of the ice layer to an 
incident plane-wave. The transfer function of pressure to surface velocity 
can be estimated by comparing the signals received from a distant source. 
At low frequencies and grazing angles, thin-plate theory is valid and the 
motion of the median plane (dashed line) is vertical. Neglecting the small 
difference in densities, the vertical component of surface velocity is the 
same as the free-surface case: Uv~(2P/pc) sin8, where P is the pressure. 
The horizontal component is Uh=: iUv(kD/2)cos8, where D is the thickness. 

Figure 16 compares hydrophone and vertical seismometer signal levels 
at 25 and 50 Hz. The equivalent plane-wave pressure Is estimated from the 
hydrophone response at the experimental depth 100m. Agreement with the 
estimated response for 8=8** (dashed line) Is seen to be reasonable. 

Figure 17 compares the horizontal and vertical-seismometer signals. 
Estimates for the experimental condition D=5m are shown by the dashed 
lines. The fact that horizontal velocities are much greater than predicted 
indicates a "rocking" motion involving slopes. The associated horizontal- 
dipole term of Appendix D must therefore be considered. 
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Figure 16: Vertical seismometer vs hydrophone data. 
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Figure 18: Attenuation-general impedance model. 

The scatter-loss integral for the horizontal-dipole case in Appendix D is: 
SL^2 k^ cos8 cote J*^^d8' cos8" Roo^ _J«d* Q^2 s^Cfi)/^ 

where Roo^ ts the effective reflection coefficient for the rigid-Doundary 
solution and Q^=k (cos8-cos8'cos<>) is the Bragg-scaltering condition 

associated with the x component of the slopes. Since an analytic solution 
of the 0 integral has not been found, the double integral must be calculated 
numerically. Note that SL->oo as 8^0 only for the rigid-boundary case and 
remains finite for finite impedance since Roo contains a sin^8 term. 

The attenuation curves shown in Figure 18 are calculated for the same 
conditions as Figure 14. Curve H is the horizontal-dipole component, curve 
V is the vertical-dipole component and curve A is dissipation. 

It is clear that the horizontal-dipole scatter component is a significant 
attenuation mechanism at the lower frequencies. However, predictions do 
not agree with the data in this range. Sensitivity to ray angle should be 
noted. Since angle effects are quite complicated, a detailed analysis by 
either normal-mode or numerical methods may be indicated. Sensitivity to 
the PDF of draft is more readily examined. 
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Figure 19: Composite general-impedance model. 

Figure 19 shows that predictions can be put into only slightly better 
agreement with data using the composite PDF model of Figure 8; i.e. a 
bimodal model with standard deviations 1.1m and 3.3m, weighting factors 
0.7 and 0.3 and mean drafts 4m and 8m, respectively. Values for the two 
modes were calculated numerically and the area-weighted losses added. 

The main effect of the composite model is due to the impedance of the 
dominant 8m component of draft. The higher impedance causes an increase 
in low-frequency loss and a reduction at high frequencies, resulting in a 
slightly better fit to the data. 

Obviously, the agreement can be improved by further modification of the 
PDF model; e.g. a multimodal model can be devised that might provide a 
better overall fit. However, in view of the problems involving ray-angle 
sensitivity, as well as questions about data accuracy, such refinements do 
not appear justified at this time nor are the prospects for success very 
encouraging. 

-20 



Conclusion 

It is apparent from this analysis that, although scattering at the rough 
ice/water interface remains the most likely mechanism for the excess 
attenuation noted in Arctic propagation experiments, consideration of 
finite-impedance effects does not appear to account for the data. 

The ice-reflectivity problem has turned out to be quite complex. At 
finite-impedance boundaries, scattering involves horizontal-dipole and 
"piston" components in addition to the usual vertical-dipole component 
associated with free surfaces. While the horizontal-dipole may be the 
most significant loss mechanism at lower frequencies, predicted values 
are still much too low. 

The scattering theory is based on the usual Bragg condition wherein the 
scatter angles are determined by matching of the acoustic and roughness 
wavenumbers. Rigorously, the MSP approximation requires small values of 
the Rayleigh-roughness parameter. This is violated mainly in the Eckart 
regime, where the solution is not limited by the criterion. Approximation 
errors are not expected to be serious much below 1 kHz. 

Effects of finite impedance on vertical-dipole scattering are quite clear 
at lower frequencies and grazing angles where inertial forces dominate. In 
this regime, scattering arises from spatial variations in mass. Since ice 
displaces an equal (almost) mass of water, scattering tends to vanish. The 
scatter loss tdB/bounce) is approximately proportional to grazing angle. 
The skip distance has similar dependence, making loss in dB/km nearly 
independent of angle. 

In the horizontal-dipole case, the dB/bounce loss is a more complex 
function of grazing angle, making the analysis of propagation much more 
sensitive to angle effects. However, since predictions are far too small in 
the inertial regime below about 100 Hz for all reasonable angles, current 
prospects for an adequate predictive model appear rather remote. 
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AppendlK A: Free-surfoce theory 

Perturbation theory for scattering at a free surface is treated in Ref. 8. 
The surface boundary condition is given by Eq. 9.2.4 as: 

p+f^dp/dz=0 1A 
where p is the acoustic pressure, ^ is the surface displacement and z is 
depth. Let p= p^^* p^ where p^^ is the pressure for^=0 and p^ is the scattered 

pressure for^#0. Equating the zero and first-order perturbation ternns as 
in Eqs. 9.2.6-7, we have: 

Po=0 p^+^ap/dzzO 2A 

The scattered field corresponds to vertical-dipole reradiation. Instead 
of following the derivation of Ref. 8, we take the more physically oriented 
approach outlined below. 

The farfield component of the Green's function for a scattering element 
and surface image yields the differential scattered pressure: 

dP^isikP^slne dA lexpClkC sin8')-exp(-ikC sine')] exp(ikR)/27TR 3A 

where k is the acoustic wavenumber, P^^ is the incident pressure, 8 and 8' 

are the incident and scatter grazing-angles, dA is an element of surface 
area and R is the radius to a distant field point. For small values of the 
exponential arguments, Eq. 3A becomes: 

dP^~-P^^ k^C, sine sine' dA exp(ikR)/TrR 4A 

For a plane wave incident in the x direction, we then have: 
P^~-P^ k^ )dx)dy ^(x,y) sin8 sine' exp[ik(R+x cose)]/TfR 5A 

where x,y are the surface coordinates. The scattered field is seen to be 
equivalent to broadside (y Integral) and vertically-steered (x integral) 
reradiation by a phased-array of vertical dipoles. 

The Bragg-scatter condition for matching the wavenumber spectrum of 

^(x,y) is Q^=k(cos8-cos8' cos^) and Q, =k cos8' simji. Continuous spectra 

involve mean-squared values and spatial convolution of Eq. 5A Is required. 
For the case of isotropic roughness, it can be shown that the result is: 

P/(e',4))^ P^^A^k^ sin^e sinks'J'^rdr^(r)J^(Qr)/(nR)2 6A 

where Q=(Q^2+ Q^2)1/2^ r=(x^+y2)'^2, ^(r) is the correlation function of C, 

sin-^ 8' is the scattering beam-pattern of an element dA, A^ is the effective 

"coherent" area and Q=k lcos^8+cos'^8'-2 cos8' cos8 cosi^]^''^ is the Bragg 
wavenumber condition. 
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The total flux scattered by the area Is: 

We defined the intensity reflection-coefficient as Q=1-SL, where SL is 
scattering loss. Conservation of total vertical flux at the surface requires 
P^^(l-Q) sin8= Pj^. Averaging over a random ensemble of areas and taking 
SL=<P 2>/p 2 sine gives: 

so ^ 

SL^2 k'* sine J'^2 de- sin^e' cose'J'd* j"rdr^(r) J^ioO/Ti 8A 

The radial integral gives the surface spectrum 52(0) and Eq. 8A becomes: 

SL~2 k"* sine J'^^ d8' sin^e' cos8'_J*d(j. S^{Q)/7l 9A 

Equation 9A is equivalent to Eq. 9.6.3 of Ref. 8. in terms of the present 
model parameters, the B&L integral is: 

SL~2k2 sine \Q dQ |d<|. [sin2e+2(Q/k)cose cos^-C^/k)^]^ ^2 s2(Q)/7t     10A 

where the radical derives from the Bragg condition and the integration 
range is over real values. The first two terms of the radical correspond 
uniquely to the Eckart and Marsh regimes while the last term causes the 
low-frequency rolloff in the Rayleigh regime. 

Equivalence of the two formulae is seen by changing the integration of 
Eq. 10A from wavenumber to angle variables 8' and^ as indicated in Ref. 8. 

From £q. 9.3.10, Q dQ becomes k^ sine' cos8' de" and, from Eqs. 9.6.1 -3, 
[sin2e+2(Q/k)cose coa|i-(Q/k)2]' ''^rsine'. 
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Appendix B: Complex; impedance 

In Figure 11, tangential forces are assumed zero. For no losses, matching 
of horizontal wavenumbers at the ice/water interface gives the relations: 

k cos8 = k^ cosp = k^cosiq 

or: cosp = (c^/c) cos8      COST] = (c^/c) cos8 IB 

Then: sinp= [1-(c/c)^ cos^Bl^''^ 
sinTi=[1-(c^/c)2cos2eF2 2B 

The waves in ice become evanescent for imaginary values of the radicals. 
In evaluating the equation of Figure 11, we make use of the identities: 

(sin2r|)^ = (2 sinr| cosTq)^ = 4 COS^TI (1 - cos^iq) 
(COS2TI)2 = (2COST]-1)^ 3B 

The impedance equation is derived from Eq. 10.7 of Ref. 2 by taking the 
impedance of the air/ice interface to be zero. Note that the equation has 
been changed to N-^ - M^ in place of M^ - N^ in order to correct for a change 
in sign of the arguments. That this is correct is seen from the asymptotic 
values 2=i p,c^t8n(k^D) at normal incidence and Z->i p^wD, cu-^O, where the 

latter is the mass-loading limit and p^D is mass per unit area. 

Losses are included by substituting c^Cl+iA^ and c^Cl+i/ii^). Values of A 

are both taken to be .02 for simplicity. The BASIC program for calculating 
Zi/Zo and Zr/Zo is shown in Figure IB. The functions used in the subroutine 
are sinx/x and tanx/x, where x is the appropriate shear or compressional 
argument. The corresponding coefficients in the main program have been 
changed accordingly. 

In all calculations, impedance is approximated as that of the unperturbed 
boundary. The method of Lapin [IB] is more general; however, resonance 
angles occur where the wavenumbers of the scattered field match the 
shear and compressional modes in the ice layer. Numerical solutions of the 
latter equations indicate that the errors are not serious, particularly at 
lower frequencies where impedance is nearly independent of angle. 

Ref. IB: A. D. Lapin, "Scattering of sound by a solid layer with rough 
boundaries", Sov. Rhys. Acoust. \2 46-51 (1966) 
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'Ice impedance-Brekhovskikh 
d0=4'ice thickness 
C3= 1800 "shear speed 
cc=5000 "compressional speed 
ds=.02 loss tan shear 
dc=ds loss tan compressional 
r3=c3/1500:rc=cc/1500 
xsca1e=3:ysc8le=1 
GOSUB 1000-Graphics 
thet8=8 
t=thet8/57.3:3=SIN(t):c=C0S(t) 
a0=2*(rs*c)'2 
br=2*rs*a0*( 1 -3i*ds*2) "shear coefficients 
bi=2*rs*a0*d3*(3-d3"2) 
a1=a0*(1-ds^2)-1 
ur=ar2-4*80*2*ds'2 
ui=4*a0*8l*ds 
a2=(rc*c)'2 
u=1-82*(1-dc*2) 
v=-2*a2*dc 
v=u*2+v'2 
vr=(u+v*dc)/v 
vi=(-v+u*dc)/v 
8r=rc*(ur*vr-ui*vi) "compressional awfficients 
8i=rc*(ui*vr+vi*ur) 
FOR n=0T0 3STEP.1 
f=50*(n+1) "acoustic frequency 
k=2*3.14*f*d0/1500 "W8venumber*d0 
r=rs:d=ds 
GOSUB 2000 
M3r=Mr:Msi=Mi:N3r=Nr:N3i=Ni 
r=rc:d=dc 
GOSUB 2000 
Mcr=Mr:Mci=M1:Ncr=Nr:Nci=Ni 
Mr=3r*Mcr-8l*Mci + br*lisr-bi*M3l 
Mi=3r*Mci+ai*Mcr+br*Msi + bi*Msr 
Nr=ar*Ncr-di*Nci + br*Nsr-bi*Ns1 
Ni=ar*Nci+8i*Ncr+br*Nsi + bi*Nsr 
zi=Mr-(Mr*(Nr*2-Ni*2) + 2*Mi*Nr*Ni)/(Mr*2+Mi'2) 
2r=ri1 + (Mi*(Nr-2-N1-2)-2*Mr*Nr*N1)/(nr*2+nr2) 
2i —2i*.9/k.2r=2r*.9/k        "normelize/ZZO 
x=xO+n*l 
yi=y0-zi*h:yr=y0-2r*h 
LINE (xt,ytr)-(x,yr):LINE (xt,yti)-(x,yi) 
xt=x:ytr=yr:yt1=yi 
NEXT n 
STOP 

2000 "Subroutine 
kkr=k/r/(l+d^2) 
kki=-kkr*d 
pp=1-(r*c)*2*(1-d*2) 
Qq=-2*d*(r*c)-2 
v=(pp'2+qq'2)*(1/4) 
ii=ATN(qq/pp) 
IF pp>0 THEN 2100 
ii=ii+3.141592654* 
2100 
3r=v*C0S(ii/2) 
si=v*SIN(ii/2) 
kr=kkr*sr-kki*3i 
ki=kki*sr + kkr*si 
cu=C0S(kr) 
su=SIN(kr) 
jj=EXP(ki) 
shu=(jj-1/jj)/2 
chu=(jj+1/jj)/2 

v=(su*chu)'2+(cu*shu)''2 
ur=su*cu/v 
ui=-shu*chu/v 
vr=3u*chu/v 
v1=-cu*shu/v 
Mr=ur*sr-ui*si 
Mi=ur*si + ui*sr 
Nr=vr*3r-vi*si 
Ni=vr*si+vi*sr 

RETURN 

Figure IB: BASIC program for Zi/Zo and Zr/Zo. 
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Appendix C: Impulse response 

Figure 1C: Ice layer impulse response. 

Figure IC shows the impulse response of the ice layer as a function of 
grazing angle. The waveforms are calculated by inverse FFT (N=256) of the 
reflection coefficient Rz. 

A gaussian waveform is used for the incident Impulse (not shown), which 
is done by gaussian weighting the Fourier amplitudes. This serves to limit 
the peak amplitude and an also to prevent ringing at high frequency. The 
non-dimensional Fourier frequency of the fundamental is taken as FD=1. 
Overlap effects of adjacent periods appear negligible. 

A time shift is needed in order to show the precursor properly. Instead 
of changing the impulse time, we take n=50 as the start time and make use 
of FFT periodicity. 

The parameters used are the same as those In Figs. 12 and 13. The shear 
critical angle is roughly 33°. Individual reflections at both boundaries are 
seen at the larger grazing angles. The impulses merge at the critical angle 
where the shear wave becomes evanescent. Polarity of the high-frequency 
components then becomes negative. Inertial effects at lower frequencies 
and grazing angles is evidenced by the persisting slower oscillations. 
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Appendl" D: Finite-impedance theory 

rei Lui uai-iuii i.iieuiy 1 ui  UULII nee aiiu 1 lyiu sui laues is i.ieaLBU 111 i^.ei. u. 

The respective boundary conditions are: 
p+ < 5p/a2=0 

dp/dz+ ^ .3^p/dz^ - 7p ■ 7^ = 0 ID 

where ?=1d/5x + j3/dy. In the rigid-boundary case, the slopes % involve 
horizontal-dlpole reradiation while the displacements ^ Involve vertical 
velocity-dipole reradiation analogous to a piston in a baffle. Equating the 
terms of the two perturbation orders to zero gives; 

P^=o p^+.; ap^/az=o 

dp^,/dz=0       ap^/3z+ <; d\/dz^ - Vp^ ■ V^ = 0 2D 

Theory for finite-impedance boundaries is treated In Ref. 9. The analysis 
involves normal-modes and is of limited use in the plane-wave reflection 
case; however, the finite-impedance perturbation equation Is given as: 

p+ < dp/dz= (ap/dz+ < d^p/dz^ - Vp ■ V^,) (Z+ .; az/dD) 3D 

where Z-ZI/wp (Zr can be neglected). Equations analogous to Eq. 2D become: 
p-zap ./dzrO 0 

..9 
p - zap /dz z U(-1 +az/aD)ap /az+ za^p /az"]- zvp • vc 4D 

The vertical-dipole component becomes: 
p^( 1 -ikz sin8% ^ (-1 +az/aD) ap^/az= - ^ [ 1-azi/azo] ap^/az 5D 

which is the free-surface result with Impedance correction factors. From 
the relations kz=Z1/pc, p^rP^^Cl+Rz), apyaz=ikP,^(1-Rz) s1n8, the Intensity 

coefficient for finite Z becomes: 

Ro2^[l-aZ1/aZoP/{[1+(sine' Zi7pc)^ni+(sin8 Zi/pc)^']} 6D 
which becomes a reflection factor In the free-surface Integrand. Errors at 

lOYv'er frequencies are evidently not serious if we take Zl'=Zi. 

The velocity-dipole term z(ap^/az+<a^p /dz^) is orthogonal and can be 

treated independently. By the same method, the solution forz^co is: 

P 2(8' .,^1^. P 2 k"* A sin'^e S^(Q)/fTTR)2 7D 

where the element beam-pattern Is now semi-isotropic. Averaged over a 

random ensemble of areas, the scatter-loss integral for finite z becomes: 

SL>^2 k^ sin^e ,J"'''^d8' cos8' Roo^    Kd^) S^(Q)/Tt 

rk"^ s1 n-^8 J"^'^d8' cos8' Roo2 s, '(Q) 8D 

where R'>j--(sin8' Zi'/pc)^ (sine Zi/pc'i-^/lll+i'slne' Zi'/pcrl[1+(sin8 Z1/pc)^]} 
Is the effective reflection factor. 
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Dy the same method, the horizontal-dipole solution forz=M is: 

P/(8'i)~ P^,2 k^ A^ cos^e Q^^^iQVi-nrt 9D 

where Q^-V. (COS8-COS8'COS(|)) is the Bragg condition associated with the 

gradient of ^. 
Results are quite different from the vertlcal-dlpole case. At the lower 

frequencies, most of the scatter Is backwards. Forward scatter Increases 
with Increasing frequency and backscatter decreases. The element beam 
pattern Is not the usual horizontal-dipole pattern because the excitation 
phase Is delayed along the x axis and the dipole null occurs In a semi-cone 
(Q^=0) including the specular direction. 

Averaged as In Appendix A, the scatter-loss Integral for the horizontal- 
dipole component with finite Z is: 

SL^2 k^ cos8 cote J'^^dS" cosG" Roo^ J^^^ Q2 sjsiyi^ 10D 

Assuming no coherence between slopes and displacements, this component 
is Independent and additive also. 

Equivalent equations for the velocity and horizontal-dipole components 
can also be derived by the method of B&L 16]. For z=oo the equation for the 
veloclty-dlpole component Is: 

SLs2k2s1n^8)QdQ(d*S2(fi)/7Ts1ne' 11D 

and the equation for the horizontal-dipole component Is: 
SL~2 cos8 cot8 ( Q^dQ jd^ji cos^iji S2(f^)/TJs1ne' 12D 

where Sln8'=(s1n'^8+2(o/k)cos8 cos4>-(Q/k)^I''^^ and the range of integration 
is over real values of the radical. 

The rigid-boundary case is also treated In Ref.lD by a different method. 
The asymptote In the Eckart regime Is shown to be SL=(2kh s1n8)^, which 
Is the same (magnitude) as the free-surface case. This result Is obtained 
from Eq. 11D, keeping only the first term In the radical. The asymptote In 
the Marsh regime Is SL «(kh)^/(kL)^^^ s1n8. This result is obtained from 
Eq. 12D, keeping only the second term In the radical. The asymptote in the 
Rayleigh regime is SL « cosB cot8 (kh)^/(kL). This result Is also obtained 
from Eq. 12D by including the third term In the radical. Numerical results 
of Eqs. 8D and 10D for Z1=oo have been found to be identical. 

Ref.lD: V. P. Lysanov, "Scattering of Sound by Irregular Surfaces", In 
Ocean Acoustics ed. L. M. Brekhovskikh (Moscow, 1974) Part IV. 
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